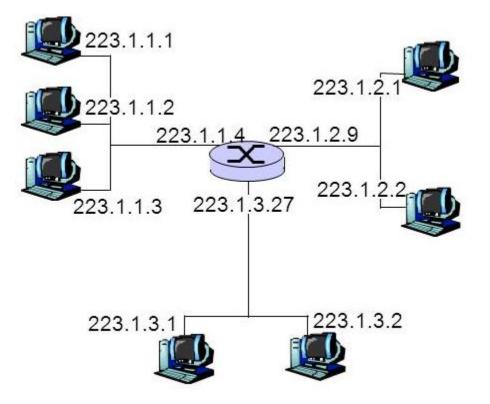


Internet Protocol version 6 (IPv6)

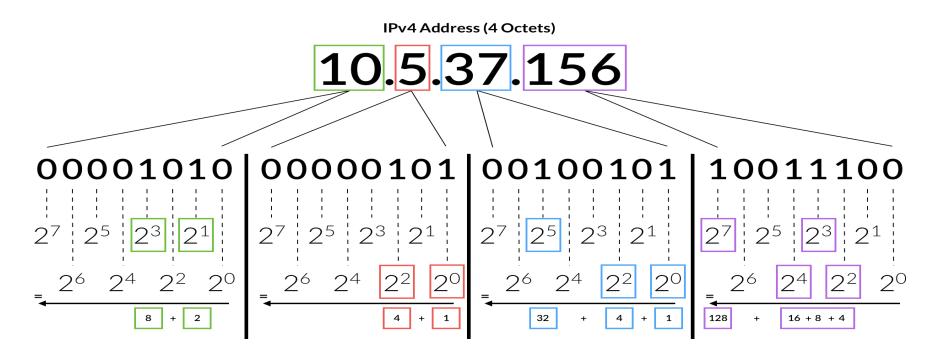
Present by Assist. Lect. Dhafer T. Shihab 30/October/2017

Presentation Outlines

- *What is an IP Address?
- Beginning with IPv4 (Internet Protocol version 4)
- ↔What was the internet like in 1981?
- The internet Begins to Take OFF
- ✤IP Addresses held by the country
- ✤IPv4: Running out of Addresses
- Introducing IPv6 (Internet Protocol version 6)IPv6
- IPv6 Address Structure
- ✤IPv6 provides some rules to shorten the address
- The Need for IPv6
- ✤Benefits of IPv6
- Transitioning to IPv6
- IPv6 Transition Methods



Internet Protocol IPv6



What is an IP Address?

An IP address is a sequence of numbers.
A way to identify machines on a network
A unique identifier

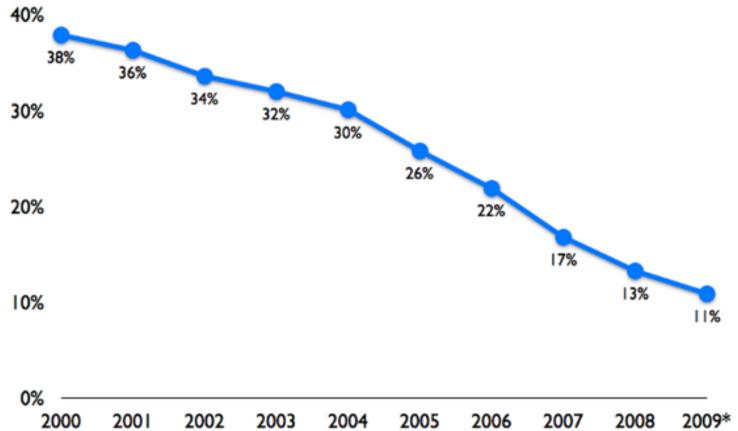
Beginning with IPv4 (Internet Protocol version 4)

- \succ Developed in the early 1980s.
- > 32-bit addresses represented in dotted-decimal notation.
- > Provides $2^{32} = 4,294,967,296$ addresses.
- ➢ It seemed like a lot of addresses at the time!

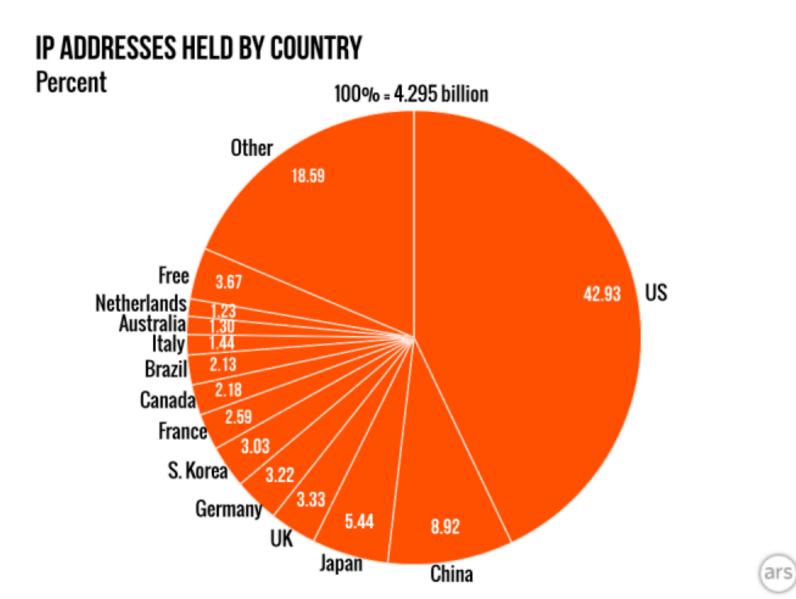
What was the internet like in 1981?

- ▶4.29 billion addresses, about1:1 ratio with the world's population.
- ➢No WWW, no mobile devices, and most people never heard of the internet.
- Mostly mainframe and minicomputers. Total Population

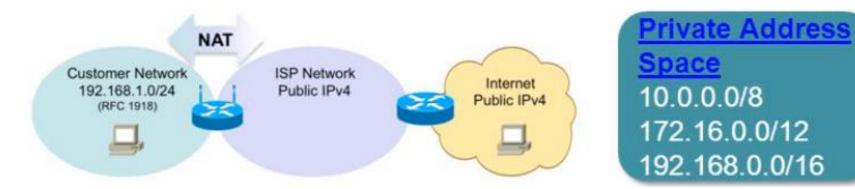
Total Population of the World by Decade, 1950–2050

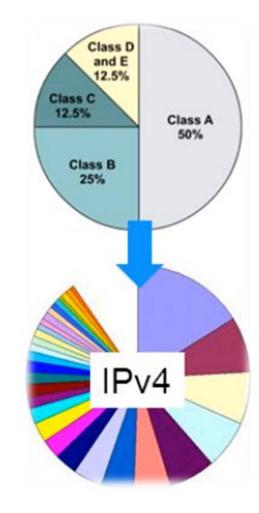

(historical and projected)

Year	Total world population (mid-year figures)	Ten-year growth rate (%)
1950	2,556,000,053	18.9%
1960	3,039,451,023	22.0
1970	3,706,618,163	20.2
1980	4,453,831,714	18.5
1990	5,278,639,789	15.2
2000	6,082,966,429	12.6
2010 ¹	6,848,932,929	10.7
2020 ¹	7,584,821,144	8.7
2030 ¹	8,246,619,341	7.3
2040 ¹	8,850,045,889	5.6
2050 ¹	9,346,399,468	_

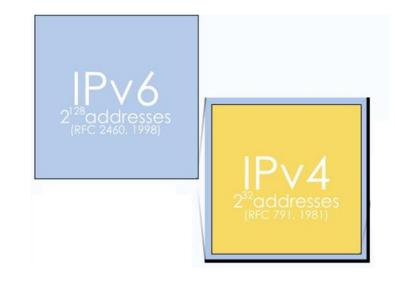

IPv4 Addresses World Population 1980
† = 100,000,000
L = 100,000,000
*www.census.gov

The internet Begins to Take OFF


- ≻1990s introduced the World Wide Web.
- Every one was getting on the internet.
- ➢Internet routing tables growing rapidly, 20,000 routes in 1994.
- ➤IETF (Internet Engineering Task 10% Force) realized that it would soon run out of IPv4 address space.


IP Addresses held by the country

IPv4: Running out of Addresses


Short term solutions included:
 NAT (Network Address Translation).
 Private address space.
 CIDR (Classless Inter-Domain Routing).
 Long-term solution: IPv6.

Introducing IPv6 (Internet Protocol version 6)

- ≻Developed mid to late 1990s.
- ≻Much learned from IPv4.
- 128-bit address space, written in hexadecimal.This gives us 340 undecillion addresses!

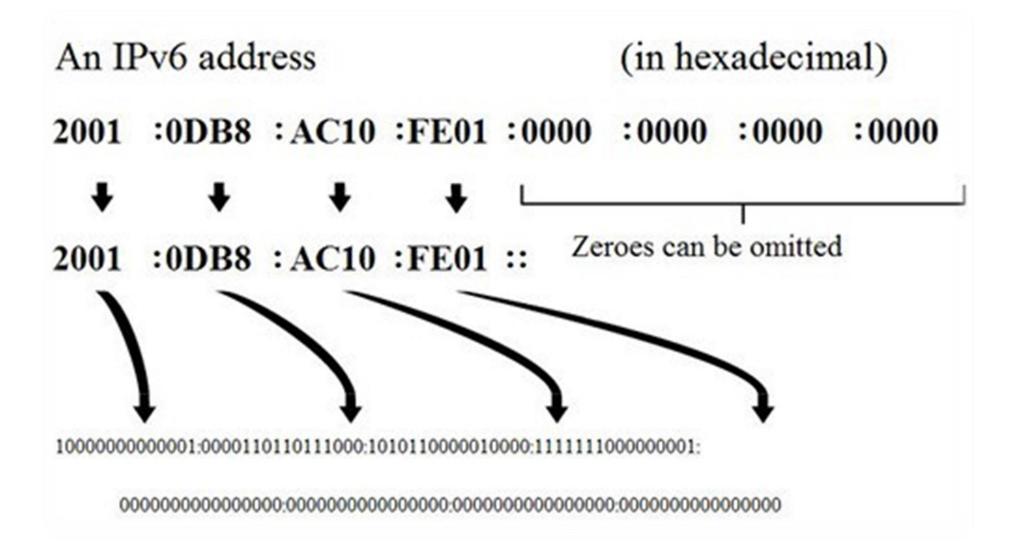
 $= (2^{128})$

340 undecillion = 340, 282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211, 456

IPv6

≻How many is 340 undecillion?

- >340 undecillion addresses is 10 nonillion addresses per person!
- Internet is a much different place and will continue to evolve:
 Mobile devices.
 Internet of Everything.
 A critical part in how we "live, work, play, and learn".


10 nonillion= 10,000,000,000,000,000,000,000,000,000

IPv6 (cont'd)

IPv6 is not just about more addresses.

- ≻Stateless auto configuration.
- End-to-end reachability without private addresses and NAT.
- Peer-to-peer networking easier to create and maintain, and services such as VoIP and Quality of Service (QoS) become more robust.

IPv6 Address Structure

IPv6 Address Structure (cont'd)

Each block is then converted into Hexadecimal and separated by `:' symbol:

2001:0000:3238:DFE1:0063:0000:0000:FEFB

Even after converting into Hexadecimal format, IPv6 address remains long.

IPv6 provides some rules to shorten the address

2001:0000:3238:DFE1:0063:0000:0000:FEFB

Rule.1:leading zero(es) compression: 2001:0:3238:DFE1:63:0:0:FEFB

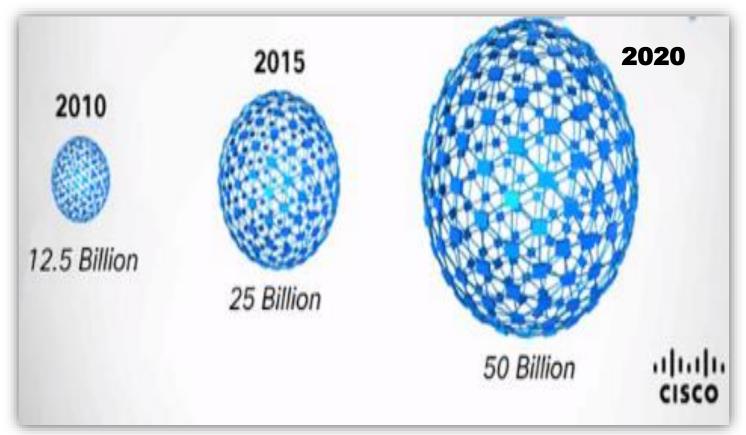
Rule.2: Zero(es) compression:

2001:0:3238:DFE1:63::FEFB

The Need for IPv6


- ➤We are running out of IPv4 address space.
- IPv4 address blocks to the RIRs (Regional Internet Registry).
- ➢RIR's have very few, if any IPv4 address left.
- ➢ Many ISPs are severely limited and some have already run out.

Actual or projected dates as of November 2014 IANA: Internet Assigned Numbers Authority

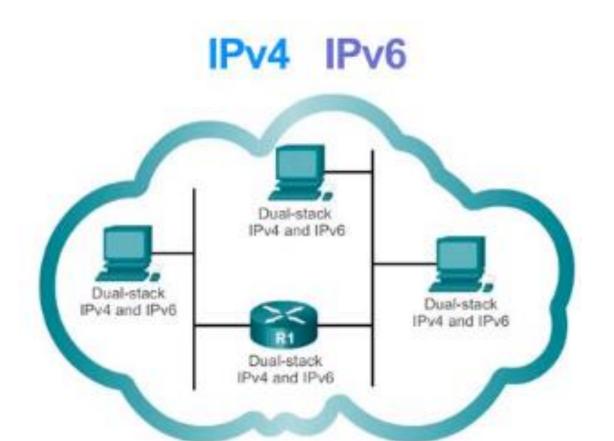

The Need for IPv6 (cont'd)

The future protocol for scaling up the internet.Enabling the internet of things (IoT)

The Need for IPv6 (cont'd)

- Cisco defines the Internet of Everything (IoE) as bringing together people, process, data, and things to make networked connections more relevant and valuable than ever before.
- \succ Cisco estimates that there will be **50 billion** "connected" devices in 2020.

Benefits of IPv6


As mentioned previously the benefits of IPv6 include:

- ≻Larger address space.
- ≻ Stateless auto configuration.
- End-to-end reachability without private addresses and NAT.
- ≻Better mobility support.
- Peer-to-peer networking easier to create and maintain, and services such as VoIP and Quality of Service (QoS) become more robust.

Transitioning to IPv6

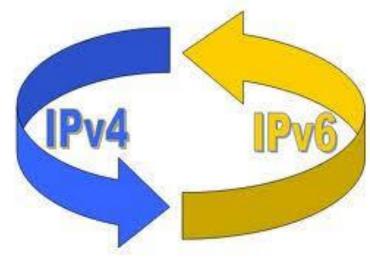
- IPv4 and IPv6 will coexist for the foreseeable future.
- Enterprises and ISPs have to support both protocols, which is a reason to eventually go to only IPv6.

C:\Users\dhafer>nslookup Default Server: google-public-dns-a.google.com Address: 8.8.8.8

```
> www.google.com
Server: google-public-dns-a.google.com
Address: 8.8.8.8
```

```
Non-authoritative answer:
Name: www.google.com
Addresses: 2a00:1450:4001:818::2004
216.58.207.68
```

```
> www.facebook.com
Server: google-public-dns-a.google.com
Address: 8.8.8.8
```


```
Non-authoritative answer:
Name: star-mini.c10r.facebook.com
Addresses: 2a03:2880:f12d:83:face:b00c:0:25de
31.13.90.36
Aliases: www.facebook.com
```

IPv6 Transition Methods

- > **Dual Stack** Running both IPv4 and IPv6 on the same devices.
- Tunneling_- Transporting IPv6 traffic through an IPv4 network transparently.
 - □ Manual IPv6 Tunnels
 - Generic Routing Encapsulation (GRE) IPv6 tunnels
 - □ 6to4 Tunnels
 - □ IPv6 rapid deployment (6rd)
 - □ IPv4 Compatible Tunnels
 - Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) Tunnels
- Translation Converting IPv6 traffic to IPv4 traffic for

transport and vice versa.

- □ Network Address Translation
- □ NAT64

orean In the HAN AND A Constant of the HAN AND A CONSTRUCTION OF THE OFFICE OFF

dreamstime

G